If you put that ball on that machine while it wasn’t spinning, it would just roll straight down the lower sides.
The raised edges would keep it in the middle line, but it’s only controlled in one direction. By spinning it, you constantly alternate the position of the tall sides, meaning that the ball is held in the middle, never able to fall off.
Particle accelerators control particles in the same way. Magnetic or electric fields can only direct particles in one plane at a time, so to keep a beam of particles rushing down a particle accelerator in one focused stream, the current gradient must constantly oscillate. This means the particles are constantly held in place, never able to shoot off in one direction.
Here’s the same principle in action: these are tiny pollen grains being held in place by an oscillating field. Rods in the four corners of the beam establish a field that oscillates many times a second to keep the pollen trapped. If it didn’t constantly switch, the pollen would all fly off in one direction.
Watch the full film with Dr Suzie Sheehy for more.
If you run really fast, you gain weight. Not permanently, or it would make a mockery of diet and exercise plans, but momentarily, and only a tiny amount.
Light speed is the speed limit of the universe. So if something is travelling close to the speed of light, and you give it a push, it can’t go very much faster. But you’ve given it extra energy, and that energy has to go somewhere.
Where it goes is mass. According to relativity, mass and energy are equivalent. So the more energy you put in, the greater the mass becomes. This is negligible at human speeds – Usain Bolt is not noticeably heavier when running than when still – but once you reach an appreciable fraction of the speed of light, your mass starts to increase rapidly.
Get you best paper, cut a circle and fold it so that the circumference falls on a fixed point inside. Repeat, using random folds. Now see the creases. This is how you paper-fold an ellipse.
M-theory
Membrane theory is a relatively new theory in the world of physics. It has been backed by Stephen Hawking as being the only candidate for the complete theory of the universe.
M-theory has been growing very popular in recent years. This is because it ties together the existing string theories into one relatively simple (mathematically) depiction of the universe. The true origins start with the older string theories that came about in the 80’s. This outlined how all the different forms of energy in the universe could be constructed out of hypothetical one dimensional “strings”. The current M-theory now believes in an 11 dimensional space (this was previously 10 in earlier versions of string theories but the introduction of supergravity increased the count to 11). Now we live in a 3D space with a total of four observable dimensions meaning that there are another 5 we cannot detect. Now in string theory, it was hypothesised that depending on how the strings vibrate the might be seen in 3 dimensions as matter, light or gravity. The problem with string theory was that different equations used to describe the vibrations of the strings kept coming out and they all appeared to be correct. Then what happened was M-theory which said that it’s possible that all the equations are describing the same thing but from a different perspective.
My current understanding of M-theory is that there are lots of 2D membranes which are in an 11D space. These two dimensional branes are not fixed in this eleven dimensional space and move around. When they collide a new 2D brane is created and it is thought that when this happens it is similar to a Big Bang. So it’s entirely possible that out universe is really a 2D membrane in an 11D space.
The first image is a Calabi-Yau manifold. It’s a multi-dimensional mathematic structure and is very significant to M-theory, all they have to do is find the “right” one.
True dat ✔
“We are analog beings living in a digital world, facing a quantum future.” Neil Turok
🐧