NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

Dr. Yolanda Shea is a climate scientist at NASA's Langley Research Center. She’s the project scientist for the CLARREO Pathfinder (CPF) mission, which is an instrument that will launch to the International Space Station to measure sunlight reflected from Earth. It will help us understand how much heat is being trapped by our planet’s atmosphere. Her mission is designed to help us get a clearer picture than we currently have of the Earth’s system and how it is changing

Yolanda took time from studying our home planet to answer questions about her life and career! Get to know this Earth scientist:

What inspired you to study climate science?

Starting in early middle school I became interested in the explanations behind the weather maps and satellite images shown on TV. I liked how the meteorologists talked about the temperature, moisture, and winds at different heights in the atmosphere, and then put that together to form the story of our weather forecasts. This made me want to learn more about Earth science, so I went to college to explore this interest more.

The summer after my junior year of college, I had an internship during which my first assignment was to work with a program that estimated ocean currents from satellite measurements. I was fascinated in the fact that scientists had discovered a way to map ocean currents from space!

Although I had learned about Earth remote sensing in my classes, this was my first taste of working with, and understanding the details of, how we could learn more about different aspects of the physical world from satellite measurements.

This led to my learning about other ways we can learn about Earth from space, and that includes rigorous climate monitoring, which is the area I work in now.

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

What does a day in your life look like?

Before I start my workday, I like to take a few minutes to eat breakfast, knit (I’m loving sock knitting right now!), and listen to a podcast or audio book. Each workday really looks different for me, but regardless, most days are a combination of quieter moments that I can use for individual work and more interactive times when I’m interfacing with colleagues and talking about project or science issues. Both types of work are fun in different ways, but I’m glad I have a mixture because all researchers need that combination of deep thinking to wrap our minds around complex problems and also time to tackle those problems with others and work on solving them together.

When do you feel most connected to Earth?

I’ve always loved sunsets. I find them peaceful and beautiful, and I love how each one is unique. They are also a beautiful reminder of the versatility of reflected light, which I study. Sitting for a moment to appreciate the beauty and calm I feel during a sunset helps me feel connected to Earth.

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

What will your mission – CLARREO Pathfinder – tell us about Earth?

CLARREO Pathfinder (CPF) includes an instrument that will take measurements from the International Space Station and will measure reflected sunlight from Earth. One of its goals is to demonstrate that it can take measurements with high enough accuracy so that, if we have such measurements over long periods of time, like several decades, we could detect changes in Earth’s climate system. The CPF instrument will do this with higher accuracy than previous satellite instruments we’ve designed, and these measurements can be used to improve the accuracy of other satellite instruments.

How, if at all, has your worldview changed as a result of your work in climate science?

The longer I work in climate science and learn from the data about how humans have impacted our planet, the more I appreciate the fragility of our one and only home, and the more I want to take care of it.

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

What advice would you give your younger self?

It’s ok to not have everything figured out at every step of your career journey. Work hard, do your best, and enjoy the journey as it unfolds. You’ll inevitably have some surprises along the way, and regardless of whether they are welcome or not, you’re guaranteed to learn something.

Do you have a favorite metaphor or analogy that you use to describe what you do, and its impact, to those outside of the scientific community?

I see jigsaw puzzles as a good illustration of how different members of a science community play a diverse set of roles to work through different problems. Each member is often working on their own image within the greater puzzle, and although it might take them years of work to see their part of the picture come together, each image in the greater puzzle is essential to completing the whole thing. During my career, I’ll work on a section of the puzzle, and I hope to connect my section to others nearby, but we may not finish the whole puzzle. That’s ok, however, because we’ll hand over the work that we’ve accomplished to the next generation of scientists, and they will keep working to bring the picture to light. This is how I try to think about my role in climate science – I hope to contribute to the field in some way; the best thing about what I have done and what I will do, is that someone else will be able to build on my work and keep helping humanity come to a better understanding of our Earth system.

What is a course that you think should be part of required school curriculum?

Time and project management skills – I think students tend to learn these skills more organically from their parents and teachers, but in my experience I stumbled along and learned these skills through trial and error. To successfully balance all the different projects that I support now, I have to be organized and disciplined, and I need to have clear plans mapped out, so I have some idea of what’s coming and where my attention needs to be focused.

Another course not specifically related to my field is personal financial management. I was interested in personal finance, and that helped me to seek out information (mainly through various blogs) about how to be responsible with my home finances. There is a lot of information out there, but making sure that students have a solid foundation and know what questions to ask early on will set them to for success (and hopefully fewer mistakes) later on.

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

What’s the most unexpected time or place that your expertise in climate science and/or algorithms came in handy?

I think an interesting part of being an atmospheric scientist and a known sky-watcher is that I get to notice beautiful moments in the sky. I remember being on a trip with friends and I looked up (as I usually do), and I was gifted with a gorgeous sundog and halo arc. It was such a beautiful moment, and because I noticed it, my friends got to enjoy it too.

NASA Spotlight: Earth Climate Scientist Dr. Yolanda Shea

Can you share a photo or image from a memorable NASA project you’ve worked on, and tell us a little bit about why the project stood out to you?

I absolutely loved being on the PBS Kids TV Show, SciGirls for their episode SkyGirls! This featured a NASA program called Students’ Clouds Observations On-Line (S’COOL). It was a citizen science program where students from around the globe could take observations of clouds from the ground that coincided with satellite overpasses, and the intention was to help scientists validate (or check) the accuracy of the code they use to detect clouds from satellite measurements. I grew up watching educational programming from PBS, so it was an honor to be a science mentor on a TV show that I knew would reach children across the nation who might be interested in different STEM fields. In this photo, the three young women I worked with on the show and I are talking about the different types of clouds.

To stay up to date on Yolanda's mission and everything going on in NASA Earth science, be sure to follow NASA Earth on Twitter and Facebook.

🌎 If you're looking for Earth Day plans, we have live events, Q&As, scavenger hunts and more going on through April 24. Get the details and register for our events HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

6 years ago

What's That Space Rock?

The path through the solar system is a rocky road. Asteroids, comets, Kuiper Belt Objects—all kinds of small bodies of rock, metal and ice are in constant motion as they orbit the Sun. But what’s the difference between them, anyway? And why do these miniature worlds fascinate space explorers so much? The answer is profound: they may hold the keys to better understanding where we all come from. Here’s 10 things to know about the solar system this week:

image

This picture of Eros, the first of an asteroid taken from an orbiting spacecraft, came from our NEAR mission in February 2000. Image credit: NASA/JPL

1. Asteroids

Asteroids are rocky, airless worlds that orbit our Sun. They are remnants left over from the formation of our solar system, ranging in size from the length of a car to about as wide as a large city. Asteroids are diverse in composition; some are metallic while others are rich in carbon, giving them a coal-black color. They can be “rubble piles,” loosely held together by their own gravity, or they can be solid rocks.

Most of the asteroids in our solar system reside in a region called the main asteroid belt. This vast, doughnut-shaped ring between the orbits of Mars and Jupiter contains hundreds of thousands of asteroids, maybe millions. But despite what you see in the movies, there is still a great deal of space between each asteroid. With all due respect to C3PO, the odds of flying through the asteroid belt without colliding with one are actually pretty good.

Other asteroids (and comets) follow different orbits, including some that enter Earth’s neighborhood. These are called near-Earth objects, or NEOs. We can actually keep track of the ones we have discovered and predict where they are headed. The Minor Planet Center (MPC) and Jet Propulsion Laboratory’s Center for Near Earth Object Studies (CNEOS) do that very thing. Telescopes around the world and in space are used to spot new asteroids and comets, and the MPC and CNEOS, along with international colleagues, calculate where those asteroids and comets are going and determine whether they might pose any impact threat to Earth.

For scientists, asteroids play the role of time capsules from the early solar system, having been preserved in the vacuum of space for billions of years. What’s more, the main asteroid belt may have been a source of water—and organic compounds critical to life—for the inner planets like Earth.

image

The nucleus of Comet 67P/Churyumov-Gerasimenko, as seen in January 2015 by the European Space Agency’s Rosetta spacecraft. Image credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

2. Comets

Comets also orbit the Sun, but they are more like snowballs than space rocks. Each comet has a center called a nucleus that contains icy chunks of frozen gases, along with bits of rock and dust. When a comet’s orbit brings it close to the Sun, the comet heats up and spews dust and gases, forming a giant, glowing ball called a coma around its nucleus, along with two tails – one made of dust and the other of excited gas (ions). Driven by a constant flow of particles from the Sun called the solar wind, the tails point away from the Sun, sometimes stretching for millions of miles.

While there are likely billions of comets in the solar system, the current confirmed number is 3,535. Like asteroids, comets are leftover material from the formation of our solar system around 4.6 billion years ago, and they preserve secrets from the earliest days of the Sun’s family. Some of Earth’s water and other chemical constituents could have been delivered by comet impacts.

image

An artist re-creation of a collision in deep space. Image credit: NASA/JPL-Caltech

3. Meteoroids

Meteoroids are fragments and debris in space resulting from collisions among asteroids, comets, moons and planets. They are among the smallest “space rocks.” However, we can actually see them when they streak through our atmosphere in the form of meteors and meteor showers.

image

This photograph, taken by an astronaut aboard the International Space Station, provides the unusual perspective of looking down on a meteor as it passes through the atmosphere. The image was taken on Aug. 13, 2011, during the Perseid meteor shower that occurs every August. Image credit: NASA

4. Meteors

Meteors are meteoroids that fall through Earth’s atmosphere at extremely high speeds. The pressure and heat they generate as they push through the air causes them to glow and create a streak of light in the sky. Most burn up completely before touching the ground. We often refer to them as “shooting stars.” Meteors may be made mostly of rock, metal or a combination of the two.

Scientists estimate that about 48.5 tons (44,000 kilograms) of meteoritic material falls on Earth each day.

image

The constellation Orion is framed by two meteors during the Perseid shower on Aug. 12, 2018 in Cedar Breaks National Monument, Utah. Image credit: NASA/Bill Dunford

5. Meteor Showers

Several meteors per hour can usually be seen on any given night. Sometimes the number increases dramatically—these events are termed meteor showers. They occur when Earth passes through trails of particles left by comets. When the particles enter Earth’s atmosphere, they burn up, creating hundreds or even thousands of bright streaks in the sky. We can easily plan when to watch meteor showers because numerous showers happen annually as Earth’s orbit takes it through the same patches of comet debris. This year’s Orionid meteor shower peaks on Oct. 21.

image

An SUV-sized asteroid, 2008TC#, impacted on Oct. 7, 2008, in the Nubian Desert, Northern Sudan. Dr. Peter Jenniskens, NASA/SETI, joined Muawia Shaddas of the University of Khartoum in leading an expedition on a search for samples. Image credit: NASA/SETI/P. Jenniskens

6. Meteorites

Meteorites are asteroid, comet, moon and planet fragments (meteoroids) that survive the heated journey through Earth’s atmosphere all the way to the ground. Most meteorites found on Earth are pebble to fist size, but some are larger than a building.

Early Earth experienced many large meteorite impacts that caused extensive destruction. Well-documented stories of modern meteorite-caused injury or death are rare. In the first known case of an extraterrestrial object to have injured a human being in the U.S., Ann Hodges of Sylacauga, Alabama, was severely bruised by a 8-pound (3.6-kilogram) stony meteorite that crashed through her roof in November 1954.

image

The largest object in the asteroid belt is actually a dwarf planet, Ceres. This view comes from our Dawn mission. The color is approximately as it would appear to the eye. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

7. Dwarf Planets

Don’t let the name fool you; despite their small size, dwarf planets are worlds that are just as compelling as their larger siblings. Dwarf planets are defined by astronomers as bodies massive enough to be shaped by gravity into a round or nearly round shape, but they don’t have enough of their own gravitational muscle to clear their path of other objects as they orbit the Sun. In our solar system, dwarf planets are mostly found in the Kuiper Belt beyond Neptune; Pluto is the best-known example. But the largest object in the asteroid belt is the dwarf planet Ceres. Like Pluto, Ceres shows signs of active geology, including ice volcanoes.

8. Kuiper Belt Objects

The Kuiper Belt is a disc-shaped region beyond Neptune that extends from about 30 to 55 astronomical units -- that is, 30 to 55 times the distance from the Earth to the Sun. There may be hundreds of thousands of icy bodies and a trillion or more comets in this distant region of our solar system.

image

An artist's rendition of the New Horizons spacecraft passing by the Kuiper Belt Object MU69 in January 2019. Image credits: NASA/JHUAPL/SwRI

Besides Pluto, some of the mysterious worlds of the Kuiper Belt include Eris, Sedna, Quaoar, Makemake and Haumea. Like asteroids and comets, Kuiper Belt objects are time capsules, perhaps kept even more pristine in their icy realm.

image

This chart puts solar system distances in perspective. The scale bar is in astronomical units (AU), with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the Sun to the Earth, which is about 93 million miles or 150 million kilometers. Neptune, the most distant planet from the Sun, is about 30 AU. Image credit: NASA/JPL-Caltech

9. Oort Cloud Objects

The Oort Cloud is a group of icy bodies beginning roughly 186 billion miles (300 billion kilometers) away from the Sun. While the planets of our solar system orbit in a flat plane, the Oort Cloud is believed to be a giant spherical shell surrounding the Sun, planets and Kuiper Belt Objects. It is like a big, thick bubble around our solar system. The Oort Cloud’s icy bodies can be as large as mountains, and sometimes larger.

This dark, cold expanse is by far the solar system’s largest and most distant region. It extends all the way to about 100,000 AU (100,000 times the distance between Earth and the Sun) – a good portion of the way to the next star system. Comets from the Oort Cloud can have orbital periods of thousands or even millions of years. Consider this: At its current speed of about a million miles a day, our Voyager 1 spacecraft won’t reach the Oort Cloud for more than 300 years. It will then take about 30,000 years for the spacecraft to traverse the Oort Cloud, and exit our solar system entirely.

image

This animation shows our OSIRIS-REx spacecraft collecting a sample of the asteroid Bennu, which it is expected to do in 2020. Image credit: NASA/Goddard Space Flight Center

10. The Explorers

Fortunately, even though the Oort Cloud is extremely distant, most of the small bodies we’ve been discussing are more within reach. In fact, NASA and other space agencies have a whole flotilla of robotic spacecraft that are exploring these small worlds up close. Our mechanical emissaries act as our eyes and hands in deep space, searching for whatever clues these time capsules hold.

A partial roster of our current or recent missions to small, rocky destinations includes:

OSIRIS-REx – Now approaching the asteroid Bennu, where it will retrieve a sample in 2020 and return it to the Earth for close scrutiny.

New Horizons – Set to fly close to MU69 or “Ultima Thule,” an object a billion miles past Pluto in the Kuiper Belt on Jan. 1, 2019. When it does, MU69 will become the most distant object humans have ever seen up close.

Psyche – Planned for launch in 2022, the spacecraft will explore a metallic asteroid of the same name, which may be the ejected core of a baby planet that was destroyed long ago.

Lucy – Slated to investigate two separate groups of asteroids, called Trojans, that share the orbit of Jupiter – one group orbits ahead of the planet, while the other orbits behind. Lucy is planned to launch in 2021.

Dawn – Finishing up a successful seven-year mission orbiting planet-like worlds Ceres and Vesta in the asteroid belt.

Plus these missions from other space agencies:

The Japan Aerospace Exploration Agency (JAXA)’s Hayabusa2– Just landed a series of small probes on the surface of the asteroid Ryugu.

The European Space Agency (ESA)’s Rosetta – Orbited the comet 67P/Churyumov-Gerasimenko and dispatched a lander to its surface.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Meet NASA Astronaut Jessica Meir

image

Jessica Meir dreamed of the day she would make it to space since the age of five. That dream became a reality on Wednesday, Sept. 25, 2019 as she left Earth on her first spaceflight – later floating into her new home aboard the International Space Station. Jessica lifted off from Kazakhstan in the Soyuz MS-15 spacecraft at 9:57 a.m. EDT (1357 GMT) alongside spaceflight participant Ali Almansoori, the first United Arab Emirates astronaut, and Oleg Skripochka, a Russian cosmonaut. 

image

As an Expedition 61 and 62 crew member, Jessica will spend six months in the vacuum of space – conducting research on a multitude of science investigations and participating in several Human Research Program studies.

While Jessica’s new home is more than 200 miles over the Earth, she is no stranger to extreme environments. She studied penguins in Antarctica and mapped caves in Italy  –  both of which prepared her for the ultimate extreme environment: space.

Get to know astronaut and scientist, Jessica Meir. 

Antarctic Field Researcher

image

For her Ph.D. research, Jessica studied the diving physiology of marine mammals and birds. Her filed research took her all the way to Antarctica, where she focused on oxygen depletion in diving emperor penguins. Jessica is also an Antarctic diver! 

Geese Trainer

image

Image Credit: UBC Media Relations

Jessica investigated the high‐flying bar-headed goose during her post‐doctoral research at the University of British Columbia. She trained geese to fly in a wind tunnel while obtaining various physiological measurements in reduced oxygen conditions.

Wilderness Survival Expert

image

In 2013, Jessica was selected as an Astronaut Candidate. While training to be a full-fledged astronaut, she participated in three days of wilderness survival training near Rangeley, Maine, which was the first phase of her intensive astronaut training program.

Mission Control Flight Controller

In our astronaut office, Jessica gained extensive mission control experience, including serving as the Lead Capsule Communicator (CapCom) for Expedition 47, the BEAM (Bigelow expandable module on the International Space Station) mission and an HTV (Japanese Space Agency cargo vehicle) mission. The CapCom is the flight controller that speaks directly to the astronaut crew in space, on behalf of the rest of the Mission Control team. 

She’s reconnecting with her best friend... in space!

image

Following a successful launch to the space station, NASA astronaut Christina Koch tweeted this image of Jessica and the crew on their journey to the orbital lab in a Soyuz spacecraft. Excitement was high as Christina tweeted, “What it looks like from @Space_Station when your best friend achieves her lifelong dream to go to space. Caught the second stage in progress! We can’t wait to welcome you onboard, crew of Soyuz 61!” 

image

We know. #FriendshipGoals. 

Follow Jessica on Twitter at @Astro_Jessica and follow the International Space Station on Twitter, Instagram and Facebook to keep up with all the cool stuff happening on our orbital laboratory.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Strap in for a Tour of the Milky Way

image

The night sky isn’t flat. If you traveled deep into this part of the sky at the speed of the radio waves leaving this tower, here are some places you could reach.

Jupiter: Travel time – 35 minutes, 49 seconds.

image

The closest object in this view is the planet Jupiter, brilliant now in the evening sky…and gorgeous when seen up close by our Juno spacecraft. Distance on the night this picture was taken: 400 million miles (644 million kilometers). 

Saturn: Travel time – one hour and 15 minutes.

image

The next closest is Saturn, another bright “star” in this summer’s sky. On the right, one of the Cassini spacecraft’s last looks. Distance: 843 million miles (1.3 billion kilometers).

Pluto: Light-speed travel time from the radio tower – four hours, 33 minutes.

image

It’s not visible to the unaided eye, but Pluto is currently found roughly in this direction. Our New Horizons space mission was the first to show us what it looks like. Distance: more than 3 billion miles.

F-type star, HD 169830: Light-speed travel time from the radio tower – 123 years.

image

Within this patch of sky, there’s an F-type star called HD 169830. At this speed, it would take you 123 years to get there. We now know it has at least two planets (one of which is imagined here) — just two of more than 4,000 we've found…so far.

The Lagoon Nebula: Light-speed travel time from the radio tower – 4,000 years.

image

If you look closely, you’ll see a fuzzy patch of light and color here. If you look *really* closely, as our Hubble Space Telescope did, you’ll see the Lagoon Nebula, churning with stellar winds from newborn stars.

Black hole, Sagittarius A*: Light-speed travel time from the radio tower – 26,000 years.

image

In 26,000 years, after passing millions of stars, you could reach the center of our galaxy. Hidden there behind clouds of dust is a massive black hole. It’s hidden, that is, unless you use our Chandra X-ray Observatory which captured the x-ray flare seen here.

image

The next time you’re under a deep, dark sky, don’t forget to look up…and wonder what else might be out there.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What are you most excited to see on your next flight? Or, what natural phenomena do you enjoy seeing the most? Thank you!


Tags
3 months ago
On a jet black background, a bright spiral galaxy softly swirls with sprays of stars extending outward from a small, glowing yellow center. Another galaxy is beneath it and to the left, angling downward. This one is shaped almost like a pea pod with faded tendrils of stars extending from both ends. Together, the pair looks like a rose with the spiral galaxy forming the blossom and the elongated one forming the stem. A handful of large, bright stars speckle the background like sparkles. Credit: NASA, ESA, and G. Bacon, T. Borders, L. Frattare, Z. Levay, and F. Summers (Viz 3D team, STScI)

Love Letters from Space

Love is in the air, and it’s out in space too! The universe is full of amazing chemistry, cosmic couples held together by gravitational attraction, and stars pulsing like beating hearts.

Celestial objects send out messages we can detect if we know how to listen for them. Our upcoming Nancy Grace Roman Space Telescope will help us scour the skies for all kinds of star-crossed signals.

On a backdrop speckled with tiny blue and yellow stars, an enormous heart-shaped nebula looms large. Clumps of dust and gas form intricate shapes, twisting around the edges of the “heart” and appearing to blow off the top in wisps so it almost appears to be on fire. The nebula is deep red and lit from within by a clump of bright blue-white stars. Credit: Brent Newton, used with permission

Celestial Conversation Hearts

Communication is key for any relationship – including our relationship with space. Different telescopes are tuned to pick up different messages from across the universe, and combining them helps us learn even more. Roman is designed to see some visible light – the type of light our eyes can see, featured in the photo above from a ground-based telescope – in addition to longer wavelengths, called infrared. That will help us peer through clouds of dust and across immense stretches of space.

Other telescopes can see different types of light, and some detectors can even help us study cosmic rays, ghostly neutrinos, and ripples in space called gravitational waves.

A complicated conglomeration of stars is intertwined on a black backdrop. Two regions glow pale yellow, one at the lower left of the screen and one at the upper right. Each is surrounded with twisted streams of stars which come together near the center of the frame, making the pair of galaxies look almost like a set of angel wings. The region at the center is dark and dusty, and the galaxies glow blue-white with clumps and speckles of bright pink stars. Credit: NASA, ESA, and the Hubble HeritageTeam (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: B. Whitmore (Space Telescope Science Institute)

Intergalactic Hugs

This visible and near-infrared image from the Hubble Space Telescope captures two hearts locked in a cosmic embrace. Known as the Antennae Galaxies, this pair’s love burns bright. The two spiral galaxies are merging together, igniting the birth of brand new baby stars.

Stellar nurseries are often very dusty places, which can make it hard to tell what’s going on. But since Roman can peer through dust, it will help us see stars in their infancy. And Roman’s large view of space coupled with its sharp, deep imaging will help us study how galaxy mergers have evolved since the early universe.

A periodic table of elements titled “Origins of the Elements.” It features the typical boxes and atomic symbols as a usual periodic table, but with pictures inside each indicating how each element is typically forged. A legend at the top explains what each picture means: the big bang, dying low-mass stars, white dwarf supernovae, radioactive decay, cosmic ray collisions, dying high-mass stars, merging neutron stars, and human-made. Credit: NASA’s Goddard Space Flight Center

Cosmic Chemistry

Those stars are destined to create new chemistry, forging elements and scattering them into space as they live, die, and merge together. Roman will help us understand the cosmic era when stars first began forming. The mission will help scientists learn more about how elements were created and distributed throughout galaxies.

Did you know that U and I (uranium and iodine) were both made from merging neutron stars? Speaking of which…

An animation that begins with two glowing white orbs spinning around each other ever faster as they move closer together until they appear to join together. Ripples appear around each of them. When they merge, the animation shifts to a zoomed out view that shows an explosion where two fiery orange jets extend out from the center in opposite directions. At the end of each jet, a large, glowing pink ball extends outward and grows larger, so that the whole thing appears like a giant dumbbell. Credit: NASA’s Goddard Space Flight Center/CI Lab

Fatal Attraction

When two neutron stars come together in a marriage of sorts, it creates some spectacular fireworks! While they start out as stellar sweethearts, these and some other types of cosmic couples are fated for devastating breakups.

When a white dwarf – the leftover core from a Sun-like star that ran out of fuel – steals material from its companion, it can throw everything off balance and lead to a cataclysmic explosion. Studying these outbursts, called type Ia supernovae, led to the discovery that the expansion of the universe is speeding up. Roman will scan the skies for these exploding stars to help us figure out what’s causing the expansion to accelerate – a mystery known as dark energy.

This animation starts with a dim view of the Milky Way, which angles across the screen from the upper left to lower right. A tiny dark ball at the left grows larger as it moves closer until it briefly takes up most of the screen before passing away again to the right. The view shifts to follow its path and we see it as a rotating planet with brownish stripes. As it moves away, the dark world fades into the background. Credit: NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Going Solo

Plenty of things in our galaxy are single, including hundreds of millions of stellar-mass black holes and trillions of “rogue” planets. These objects are effectively invisible – dark objects lost in the inky void of space – but Roman will see them thanks to wrinkles in space-time.

Anything with mass warps the fabric of space-time. So when an intervening object nearly aligns with a background star from our vantage point, light from the star curves as it travels through the warped space-time around the nearer object. The object acts like a natural lens, focusing and amplifying the background star’s light.

Thanks to this observational effect, which makes stars appear to temporarily pulse brighter, Roman will reveal all kinds of things we’d never be able to see otherwise.

On a black background, a white outline in the shape of a blocky rainbow contains a picture of a dusty nebula. It’s mottled brown, green, and blue and speckled with glowing pink stars. Channels of dust twist and curl around the edges of the frame, and at the center a small white box contains a much sharper image of part of the nebula. At the top of the blocky rainbow-like outline, it says, “With you, I see the bigger picture,” and underneath it says, “Love, Roman.” Credit: NASA’s Goddard Space Flight Center

Roman is nearly ready to set its sights on so many celestial spectacles. Follow along with the mission’s build progress in this interactive virtual tour of the observatory, and check out these space-themed Valentine’s Day cards.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago
Swirling Bands Of Light And Dark Clouds On Jupiter Are Seen In This Image Made By Citizen Scientists

Swirling bands of light and dark clouds on Jupiter are seen in this image made by citizen scientists using data from our Juno spacecraft. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (km) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. This image was acquired on May 19, 2017 from about 20,800 miles (33,400km) above Jupiter's cloud tops. Learn more

Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt /Seán Doran

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

Meet Megan McArthur, NASA Astronaut & Crew-2 Pilot

NASA astronaut Megan McArthur will launch on Friday, April 23 to the International Space Station as the pilot for NASA’s SpaceX Crew-2 mission! This is the second crew rotation flight with astronauts on the Crew Dragon spacecraft and the first launch with two international partners as part of the agency’s Commercial Crew Program. McArthur is responsible for spacecraft systems and performance and is assigned to be a long-duration space station crew member. While this is her first trip to the space station, McArthur’s career has prepared her well for this important role on the Crew-2 team!

Meet Megan McArthur, NASA Astronaut & Crew-2 Pilot

McArthur on the Crew Access Arm of the mobile launcher inside the Vehicle Assembly Building at Kennedy Space Center. Credits: NASA/Joel Kowsky

McArthur was born in Honolulu, Hawaii and grew up in California. She is a former Girl Scout and has a Bachelor of Science in Aerospace Engineering from the University of California, Los Angeles and a Ph.D. in Oceanography from the University of California, San Diego where she performed research activities at the Scripps Institution of Oceanography.

Meet Megan McArthur, NASA Astronaut & Crew-2 Pilot

McArthur floating in microgravity during her STS-125 mission in 2009 aboard space shuttle Atlantis. Credits: NASA

While in graduate school, McArthur conducted research, served as Chief Scientist for at-sea data collection operations, and planned and led diving operations. She also volunteered at the Birch Aquarium at Scripps, conducting educational demonstrations for the public from inside a 70,000-gallon exhibit tank of the California Kelp Forest. Her experience conducting research in extreme conditions will certainly come in handy once she’s aboard the space station, as a big part of the astronauts’ job involves running research experiments in microgravity.

Meet Megan McArthur, NASA Astronaut & Crew-2 Pilot

McArthur, seen through the window of space shuttle Atlantis, operating the robotic arm during a spacewalk. Credits: NASA

McArthur was selected as a NASA astronaut in 2000 and flew her first spaceflight aboard STS-125, the final space shuttle mission to service the Hubble Space Telescope. She worked as the flight engineer during launch and landing, and also served as the shuttle's robotic arm operator as she carefully retrieved the telescope and placed it in the shuttle’s cargo bay for servicing. The successful mission improved the telescope's capabilities and extended its life – and Hubble is still helping us make discoveries about our universe.

Meet Megan McArthur, NASA Astronaut & Crew-2 Pilot

McArthur pictured in her pressure suit during a training session at SpaceX HQ in Hawthorne, California. Credits: NASA

Now, it’s time for the next big milestone in McArthur’s career! On Friday, April 23 Crew-2 will launch from Kennedy Space Center in Florida en route to the International Space Station. McArthur is the pilot of the Crew Dragon spacecraft and second-in-command for the mission.

NASA TV coverage of Crew-2 launch preparations and liftoff will begin at 1:30 a.m. EDT Friday, April 23 with launch scheduled for 5:49 a.m. EDT. Crew Dragon is scheduled to dock to the space station Saturday, April 24, at approximately 5:10 a.m. EDT. Watch live: www.nasa.gov/nasalive

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Hello Dr Kate Rubins, why conduct your researches in space? What is there in space that you need for your research? Best regards.


Tags
9 years ago

Solar System: Things to Know This Week

Our solar system is huge, so let us break it down for you. Here are a few things you should know this week:

1. Science at the Edge

image

As the New Horizons spacecraft speeds away at more than 31,000 miles per hour (14 km/s) it continues to explore the Kuiper Belt, the region of icy bodies beyond Neptune. New Horizons has now twice observed 1994 JR1, a 90-mile-wide object orbiting more than 3 billion miles from the sun.

2. A Spaceship, Refined

image

This artist’s rendering shows our Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. The mission will place a spacecraft in orbit around Jupiter to explore the giant planet’s moon Europa. This updated concept image shows tow large solar arrays extending from the sides of the spacecraft, to which the mission’s ice-penetrating radar antennas are attached. A saucer-shaped high-gain antenna is also side mounted with a magnetometer boom placed next to it. Find out more about the spacecraft HERE.

3. Sojourn at Saturn

image

The Cassini spacecraft is hard at work this week, orbiting Saturn to study the planet and its rings. The recent pictures are spectacular, take a look at them HERE.

4. Talking Juno

image

Our Juno mission arrives at Jupiter on July 4, and that presents a unique opportunity for educators, science communicators and anyone interested in space exploration. We are providing a growing set of Juno-related information resources. Take a look at them HERE.

5. Now THAT’S a Long Distance Call

image

How do explorers on Earth talk to astronauts and robotic spacecraft flung across the far reaches of space? They use the remarkable technology deployed by our Space Communications and Navigation (SCaN) Program Office. This month, SCaN is celebrating its 10th anniversary of managing the ultimate network. Find out how it works HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: 5 Things To Know This Week

Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:

1. Dancing with a Star

image

Our local star, better known as the sun, teems with activity. This month NASA has been tracking regions that burst with magnetic loops. The Solar Dynamics Observatory is one of several space-based assets that keep tabs on the sun daily, watching as charged particles trace the magnetic field, forming bright lines as they emit light in ultraviolet wavelengths.

2. An Idyll for Ida

image

On Nov. 24, the asteroid Ida makes its closest approach to Earth (at a very safe distance). Ida is the first asteroid found to have its own moon, and the second ever visited by a spacecraft. Its close encounter happened in 1993 as Galileo flew by en route to Jupiter.

3. Moonshine

image

On Nov. 23, the Cassini spacecraft will fly near Saturn's icy moon Tethys. Several instruments aboard Cassini will collect data, including an eight-frame color image mosaic. Between Nov. 27 and Dec. 2, Cassini will have very limited communications with Earth, because Cassini will enter solar conjunction, when Cassini and Saturn are on the other side of the Sun from Earth.

4. The Moon Will Occult Aldebaran

image

That may sound ominous, but all it means is that Earth's moon will pass in front of the giant red star Aldebaran on Nov. 26. Aldebaran is the bright "eye" of the constellation Taurus. The event will only be visible in some parts of North America. Details can be found HERE. 

5. One Wild Ride, One Year Later

image

What a year it's been for the Rosetta mission since the Philae lander came to rest on the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. A steady flow of data from the orbiter, together with several days of information sent from the lander, is providing a detailed picture of this remnant from the creation of the solar system.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • jyoshimitsuj
    jyoshimitsuj liked this · 8 months ago
  • cyarskaren52
    cyarskaren52 reblogged this · 1 year ago
  • perplecta
    perplecta liked this · 1 year ago
  • fionnemrys
    fionnemrys liked this · 1 year ago
  • madrielite
    madrielite reblogged this · 1 year ago
  • riotictnandpegod
    riotictnandpegod liked this · 1 year ago
  • madrielite
    madrielite liked this · 1 year ago
  • hahahahahsofunny
    hahahahahsofunny liked this · 1 year ago
  • contmareptu
    contmareptu liked this · 1 year ago
  • ttokabcallind
    ttokabcallind liked this · 1 year ago
  • contra-passo
    contra-passo liked this · 2 years ago
  • torivmod
    torivmod liked this · 2 years ago
  • rouge-wall-enthusiast
    rouge-wall-enthusiast liked this · 2 years ago
  • afterevergreen
    afterevergreen liked this · 2 years ago
  • mochadreamies
    mochadreamies liked this · 2 years ago
  • monkeysaymonkeydo3
    monkeysaymonkeydo3 liked this · 2 years ago
  • etherealpixie8
    etherealpixie8 liked this · 2 years ago
  • black-olympian
    black-olympian liked this · 2 years ago
  • peerlesswintermelon
    peerlesswintermelon liked this · 2 years ago
  • kindaloveukindahateu
    kindaloveukindahateu liked this · 2 years ago
  • astraxolotlgirl
    astraxolotlgirl reblogged this · 2 years ago
  • astraxolotlgirl
    astraxolotlgirl liked this · 2 years ago
  • fluffyduckgardens
    fluffyduckgardens liked this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags